Statistiques descriptives à 1 variable - Tri à plat A quoi vont-elles servir ?

Décrire Distribution Position: moyenne, mode, médiane, ... (ordre de grandeur) Résumer paramètres et graphes ----Forme (symétrie, tendance...) **Dispersion**: écart-type, variance, quantiles, ... (répartition autour de l'ordre de grandeur) **Echantillons – Populations** Comparer

Contexte ⇒ contribue à faire parler vos données

- Rappels sur la manipulation des données sous R
- Premier graphe avec R
- Comparaison avec EXCEL
- Les fichiers : véhicules des données
- Instructions gérant les matrices permettant, entre autre, de réaliser des graphes
- Gestion des barres d'incertitude (erreur)
- Présentation Powerpoint de votre graphe
- La part du stochastique dans un graphe déterministe
- Quizz final
- De l'acquisition des données
- Exercice proposé (difficulté : 3 sur une échelle de 5 niveaux)

Avertissements:

- > ça commence doucement mais le rythme ne souffrira pas des manques d'attentions
- > on travaille en groupe
- > on signe un engagement à ne pas utiliser internet à des fins personnelles en classe

Autre:

> présentation du site web de l'enseignement

Traitement des données (data processing)

- Récupération et formatage des données brutes : entrées (celles de l'expérience par ex, dans des fichiers)
- Déclaration des acteurs des calculs (variables, vecteurs, matrices, constantes, ...)
- Phase de calcul
- Graphes + sorties (fichiers résultats : images, tableaux, nombres)
- Transmission des résultats (serveur, web/FTP, mailing, clé usb, ...)

nous allons nécessairement utiliser et manipuler différents fichiers

⇒ Pour réaliser un graphe :

Les fichiers sont les véhicules des données (depuis l'acquisition jusqu'à l'analyse des données)

- Récupérer (clé usb, ordinateur, réseau) un fichier formaté (Texte ASCII)
- Lire le fichier (instructions réservées R)
- Transférer les données dans une matrice
- (> instructions gérant les matrices)
- Utiliser les fonctions statistiques et graphiques appropriées

(dépend du type de contenu du fichier)

Processus déterministe

Processus dans lequel un antécédent produit toujours le même effet.

cause
$$\Longrightarrow$$
 effet

Processus stochastique (aléatoire)

Processus qui, pour un antécédent donné, peut produire plusieurs effets, chacun ayant une probabilité déterminée.

	résultat	Probabilité
	#1	P1
	#2	P2
cause	#3	P3
	#4	P4
	#5	P5

Les processus stochastiques font l'objet de l'analyse statistique.

Exemple de processus déterministe :

Loi de Beer-Lamber $DO^{\lambda} = \mathbf{E}^{\lambda}.1.C$

On peut suivre une courbe de croissance (vers 620 nm) bactérienne à l'aide d'un spectrophotomètre. La cause *C augmente* provoque directement le même effet *DO augmente*.

Exemple de processus stochastiques :

- Résistance d'une souche bactérienne à un antibiotique donné (boîtes de Pétri)
- Naissance des alvins quelques jours après l'accouplement de 2 poissons

DO	temps
0.005	0
0.006	5
0.007	10
0.008	15
0.011	20
0.017	30
0.023	40
0.033	45
0.080	60
0.085	75
0.120	90
0.250	105
0.330	120
0.600	135
1.020	150
1.950	165
2.320	170
2.660	175
3.340	180
4.050	200
4.250	210
4.170	220
4.280	230
4.250	240

identificateurs/labels (non obligatoire mais conseillé)

données : matrice [24,2]

variables aléatoires : 2

Type de courbe : déterministe

échantillon: 1 très probablement = une série de mesures

unités: reporter sur le graphe celles utilisées

précision des données: il faut être raisonnable

autre: nous verrons au cours de la réalisation du graphe

QUIZZ

temps	DO
0	0.005
5	0.006
10	0.007
15	0.008
20	0.011
30	0.017
40	0.023
45	0.033
60	0.080
75	0.085
90	0.120
105	0.250
120	0.330
135	0.600
150	1.020
165	1.950
170	2.320
175	2.660
180	3.340
200	4.050
210	4.250
220	4.170
230	4.280
240	4.250

Q1 : Peut-on utiliser ces données pour réaliser un test d'hypothèse ?

Q2 : Si oui quel type de test (expliquer en 1 ligne maxi) ?

- ⇒ Récupérer les données d'un fichier (logiciel R)
- **⇒** Format ASCII (texte universel)

read.table récupérer un fichier formaté avec entêtes de colonnes

(ressemble à une feuille de calcul EXCEL)

scan récupérer les données d'un fichier constitué uniquement de réels

(réels : au sens large)

nous allons utiliser et comparer ces 2 instructions

bacteria_data.txt

Col	1	2	3	4	5	6	7
Line	temps	DO1	DO2	DO3	DO4	DO5	DO6
1	0	0.005	0.005	0.003	0.005	0.005	0.005
2	5	0.004	0.008	0.006	0.007	0.005	0.006
3	10	0.008	0.007	0.007	0.006	0.006	0.007
4	15	0.007	0.005	0.005	0.005	0.013	0.012
5	20	0.005	0.013	0.010	0.014	0.010	0.016
6	30	0.012	0.022	0.016	0.021	0.018	0.017
7	40	0.024	0.036	0.031	0.018	0.018	0.012
8	45	0.042	0.021	0.028	0.038	0.038	0.033
9	60	0.082	0.080	0.067	0.090	0.091	0.073
10	75	0.086	0.084	0.067	0.096	0.099	0.080
11	90	0.097	0.132	0.139	0.112	0.118	0.121
12	105	0.258	0.217	0.251	0.214	0.254	0.303
13	120	0.371	0.327	0.273	0.276	0.326	0.380
14	135	0.583	0.666	0.580	0.624	0.499	0.657
15	150	1.000	0.920	1.104	1.072	1.135	1.014
16	165	1.917	1.892	1.825	2.137	1.894	1.937
17	170	2.410	2.267	2.250	2.245	2.286	2.361
18	175	2.599	2.748	2.585	2.662	2.593	2.708
19	180	3.331	3.275	3.305	3.334	3.316	3.267
20	200	3.998	4.085	4.075	4.047	4.123	4.147
21	230	4.360	4.194	4.320	4.318	4.268	4.206
22	240	4.291	4.241	4.365	4.261	4.272	4.284

identificateurs

(non utilisés) **skip**

> sauter cette ligne du fichier

Tab[10,3]=0.084

nl = 22 ncol = 7

```
scan("./data/bacteria_data.txt",skip=2)
nl=length(mesures)/7
tab_val=matrix(mesures,ncol=7,nrow=nl,byrow=T)
temps=matrix(ncol=1,nrow=nl,byrow=T)
Abs_600=matrix(ncol=1,nrow=nl,byrow=T)
error=matrix(ncol=1,nrow=nl,byrow=T)
for (i in 1:nl)
temps[i]=tab_val[i,1]
Abs_600[i]=2*round(mean(tab_val[i,2:7]),3)
error[i]=round(sd(tab_val[i,2:7]),3)
Graphe de Abs_600 en fonction du temps : la moyenne des 6
mesures de DO effectuées à chaque temps
plot(x=temps,y=Abs_600)
arrows(temps, Abs_600-error, temps, Abs_600+error,
       length = .05, angle = 90, code = 3)
```